Some groups whose reduced C*-algebra is simple

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Groups Whose Reduced C {algebras Have Stable Rank One

It is proved that, for the following classes of groups, ?, the reduced group C-algebra C (?) has stable rank 1: (i) hyperbolic groups which are either torsion{free and non{elementary or which are cocom-pact lattices in a real, noncompact, simple, connected Lie group of real rank 1 having trivial center; (ii) amalgamated free products of groups, ? = G 1 H G 2 , where H is nite and there is g 0 2...

متن کامل

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

C-Characteristically Simple Groups

Let G be a group and let Autc(G) be the group of central automorphisms of G. We say that a subgroup H of a group G is c-characteristic if α(H) = H for all α ∈ Autc(G). We say that a group G is c-characteristically simple group if it has no non-trivial c-characteristic subgroup. If every subgroup of G is c-characteristic then G is called co-Dedekindian group. In this paper we characterize c-char...

متن کامل

On Groups whose Geodesic Growth is Polynomial

This note records some observations concerning geodesic growth functions. If a nilpotent group is not virtually cyclic then it has exponential geodesic growth with respect to all finite generating sets. On the other hand, if a finitely generated group G has an element whose normal closure is abelian and of finite index, then G has a finite generating set with respect to which the geodesic growt...

متن کامل

Groups whose set of vanishing elements is exactly a conjugacy class

‎Let $G$ be a finite group‎. ‎We say that an element $g$ in $G$ is a vanishing element if there exists some irreducible character $chi$ of $G$ such that $chi(g)=0$‎. ‎In this paper‎, ‎we classify groups whose set of vanishing elements is exactly a conjugacy class‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications mathématiques de l'IHÉS

سال: 1994

ISSN: 0073-8301,1618-1913

DOI: 10.1007/bf02698898